

PV Module Quality & Reliability at SERIS

Mauro PRAVETTONI, PhD
Head of PV Module Characterization
Solar Energy Research Institute of Singapore (SERIS)

Workshop, Santiago, Chile 4 April 2019

1. SERIS

Solar Energy Research Institute of Singapore

- Founded in 2008; focuses on applied solar energy research
- Part of the National University of Singapore (NUS)
- Rapid growth (now > 200 people and > 6000 m² of space)
- State-of-the-art laboratories
- R&D focus is on solar cells, PV modules and PV systems
- Specialised in professional services for the PV industry
- □ ISO 9001 & ISO 17025* certified (* PV Module Testing Lab)

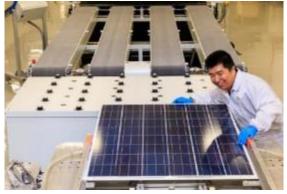
SERIS' Vision & Mission

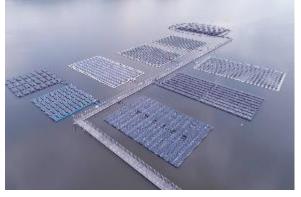
Vision

A leading solar energy research institute in the world, contributing to pore global sustainable development

Mission

To develop and commercialise solar technologies suited for urban and tropical applications, and support industry development and the energy transformation towards higher solar adoption.





Main R&D areas of SERIS

Solar cells:

- Silicon wafer solar cells (various cell architectures)
- Tandem solar cells on silicon (e.g. GaAs, perovskites)
- Characterisation & simulation

PV modules:

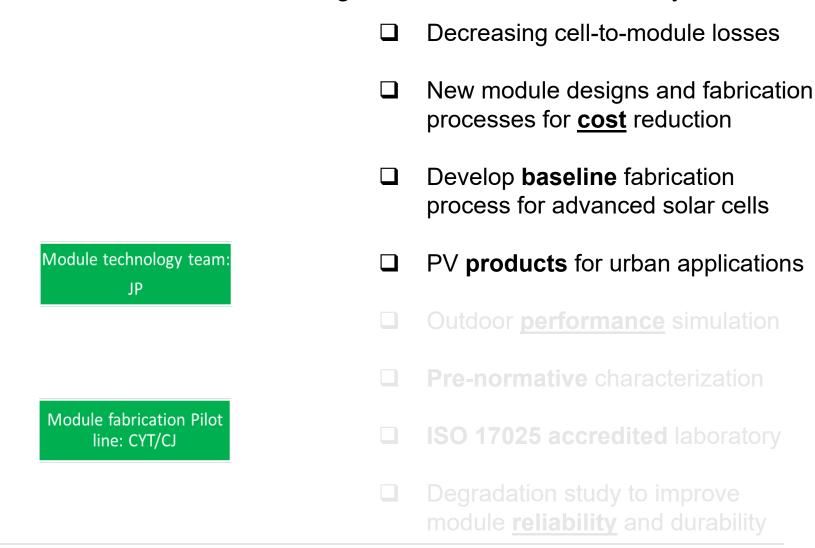
- Module development
- Characterisation & simulation
- Module testing (indoor & outdoor)
- Module certification
- Module reliability study and failure root cause analysis
- PV Module recycling

Solar systems:

- System technologies, incl. Floating PV
- PV grid integration
- Solar potential & energy meteorology
- Urban Solar, incl. BIPV
- Quality assurance of PV systems
- Solar thermal systems

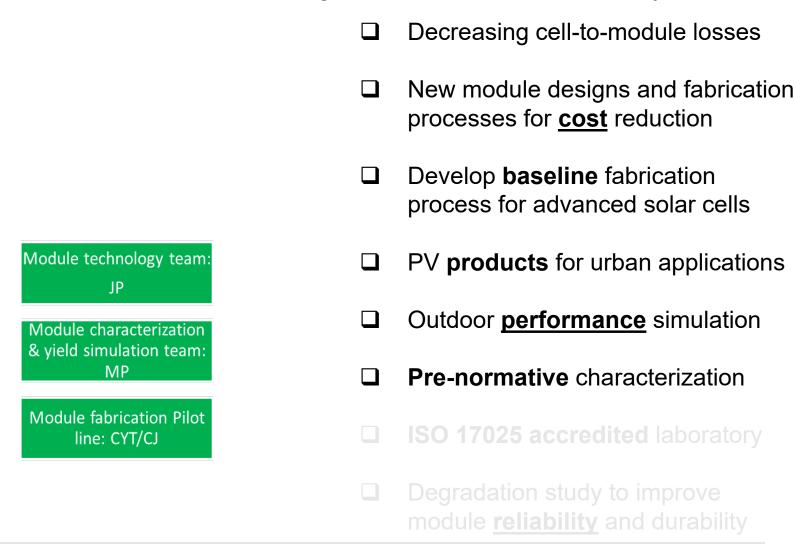
PVM Cluster

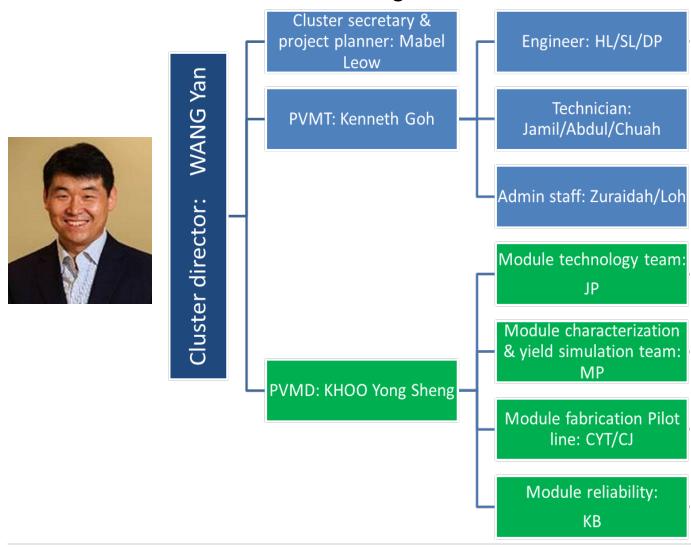
- Decreasing cell-to-module losses
- New module designs and fabrication processes for <u>cost</u> reduction
- Develop baseline fabrication process for advanced solar cells
- PV products for urban applications
- Outdoor <u>performance</u> simulation
- □ Pre-normative testing
- ISO 17025 accredited laboratory
- Degradation study to improve module <u>reliability</u> and durability



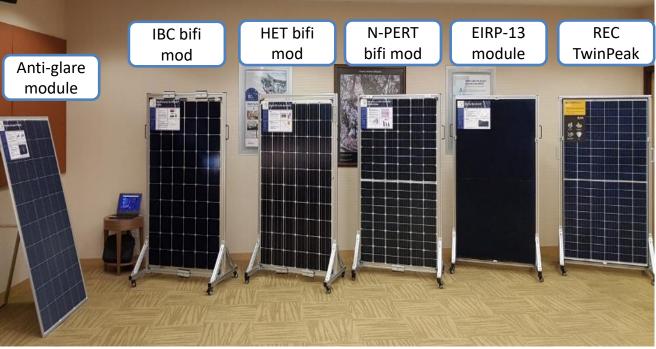
Research areas focused reducing Levelized Cost of Electricity

Decreasing cell-to-module losses New module designs and fabrication processes for **cost** reduction Module technology team: JP




	Decreasing call to module leader
Engineer: HL/SL/DP	Decreasing cell-to-module losses
Technician: Jamil/Abdul/Chuah	New module designs and fabrication processes for <u>cost</u> reduction
Admin staff: Zuraidah/Loh	Develop baseline fabrication process for advanced solar cells
Module technology team: JP	PV products for urban applications
Module characterization	Outdoor performance simulation
& yield simulation team: MP	Pre-normative characterization
Module fabrication Pilot line: CYT/CJ	ISO 17025 accredited laboratory
	Degradation study to improve module <u>reliability</u> and durability

Engineer: HL/SL/DP	Decreasing cell-to-module losses
Technician: Jamil/Abdul/Chuah	New module designs and fabrication processes for <u>cost</u> reduction
Admin staff: Zuraidah/Loh	Develop baseline fabrication process for advanced solar cells
Module technology team:	PV products for urban applications
Module characterization	Outdoor <u>performance</u> simulation
& yield simulation team: MP	Pre-normative characterization
Module fabrication Pilot line: CYT/CJ	ISO 17025 accredited laboratory
Module reliability: KB	Degradation study to improve module reliability and durability



PV Module development

Modules showcase during SERIS' 10th year anniversary

R&D highlights: PV Module Testing

Transfer IEC standards to National standards

- □ IEC 63092-1&2: new standards for BIPV
 - > Weight
 - ➢ Glare
 - Aesthetic
 - Ease of system integration
 - Building comfort, etc.
- ☐ IEC "informal" group for **VIPV**:
 - Modelling & design (2D vs 3D)
 - Power rating: STC to be defined
 - > Qualification: car-oriented tests
 - > Energy rating

PVM Testing Laboratory

ISO 17025 accredited: for the industry in the Tropics

Certification

 Latest IEC 61215, 61730 & UL1703 standards

Fault Analysis

 Detect and localize module defects

Golden Modules

 Precision measurements with Uncertainty reporting

Test-bedding

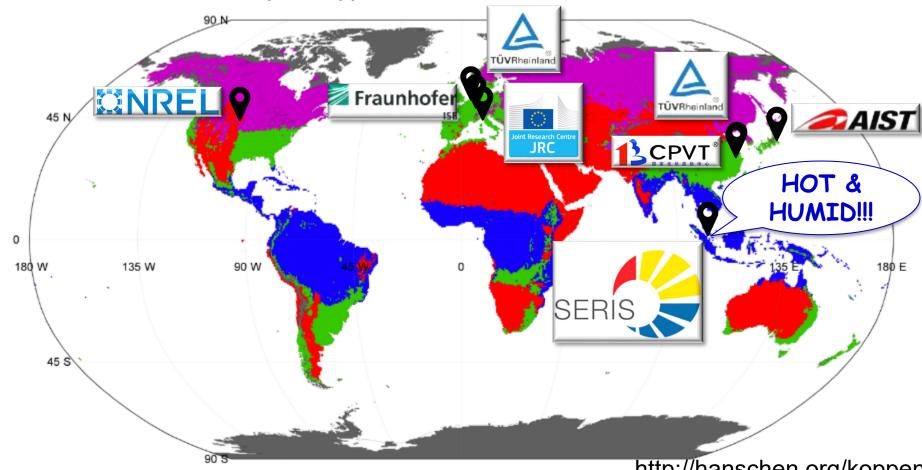
 Components and accessories e.g. smart Junction boxes, etc

Pre-normative Testing

- Industry relevant research for the Tropics
- Extended stress tests

SQC batch test

 Quality checking batch to batch for system installation



PV testing for the Tropics

A target leadership area for SERIS

World map of Köppen climate classification for 1901–2010

http://hanschen.org/koppen

A: tropical

B: drv

C: temperate

D: continental

E: polar

IEC TC 82 experts in SERIS

Dr Thomas REINDL SERIS Deputy CEO SES Cluster Director Member of WG 3 ("Systems")

Dr WANG Yan PVM Cluster Director Member of WG 2 ("Modules"), WG 6 ("BoS") and WG 8 ("Cells")

Dr Mauro PRAVETTONI PVM Cluster, Senior Research Fellow Member of WG 2 ("Modules") Member of WG 7 ("CPV"),

IEC/ISO 17025 TA for NATA

2019 TC82 Meeting

Busan, 15-19 October 2018

SERIS current activities in WG2

IEC 61853-2 (concerns on "NMOT"):

Amendment in preparation (PL: Lee, CFV)

- IEC 60904-8 ("Spectral Responsivity"): Amendment to be launched Proposed to include instructions for bifacial modules: SERIS to participate (PL: Winter, PTB)
- IEC 60904-9 ("Solar Simulator Classification") Ed.3: CD commented CDV presented in Busan. SERIS was part of the PT.
 (PL: Hermann, TÜV-Rheinland)
- IEC 60891 ("T and G coefficients") Ed.2: CD in preparation SERIS part of the PT. (PL: Monokroussos, TÜV-Rheinland)

SERIS activities within WG2

IEC TS 60904-1-2 ("Bifacial PV modules") Ed.1

Published in 2019 (PL: Vakfouri, ex-Pasan).

Bifacial Round-Robin started in June (SERIS coordinates).

Possible future NP?

- Energy-rating for bifacial
- Floating PV
- PV-on-cars

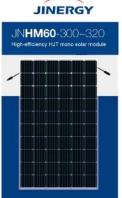
• ...

SERIS & IEC/TC82

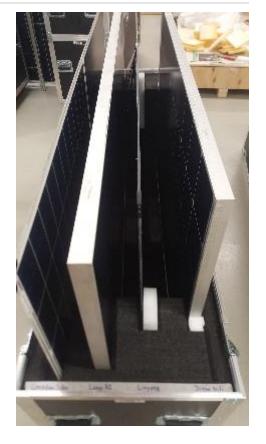
New or revised standards relevant for

Topic	Relevant IEC standard	From -> To	Impact from/to SG
PID (reliability)	IEC TS 62804	(-> <u>IEC</u>	 SERIS gave feedback to PT PID in salt mist chamber (maritime environment) PID test for SolarNova
Bifacial	IEC TS 60904-1-2	-> <u>IEC</u>	1 st International RR coordinated by SERIS
LeTID (reliability)	IEC 61215	<u> </u> ->	Give SERIS' feedback
Energy rating	IEC 61853	<u> EC</u> <->	Criticalities of NMOTHot&humid climate
EL	IEC TS 60904-13	<u> </u>	1 st International RR coordinated by SERIS

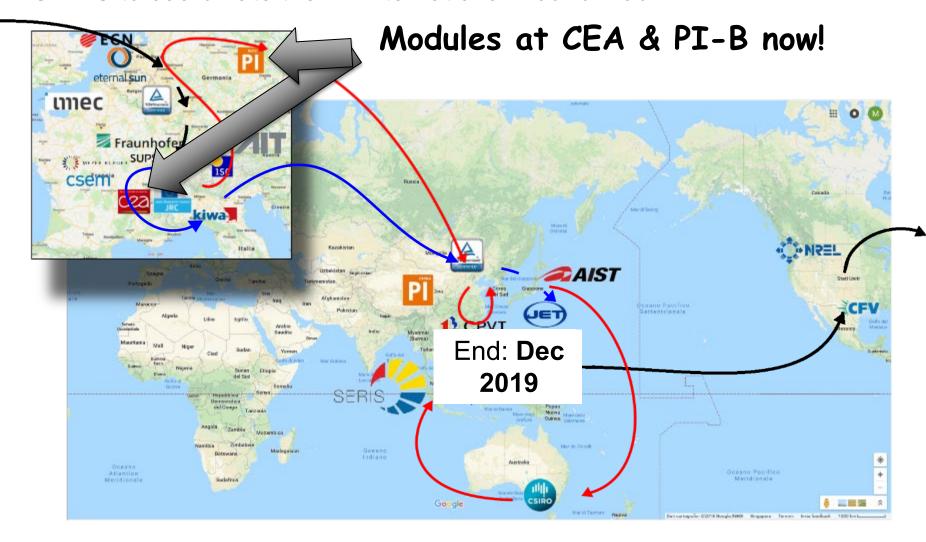
Bifacial modules: pre-normative



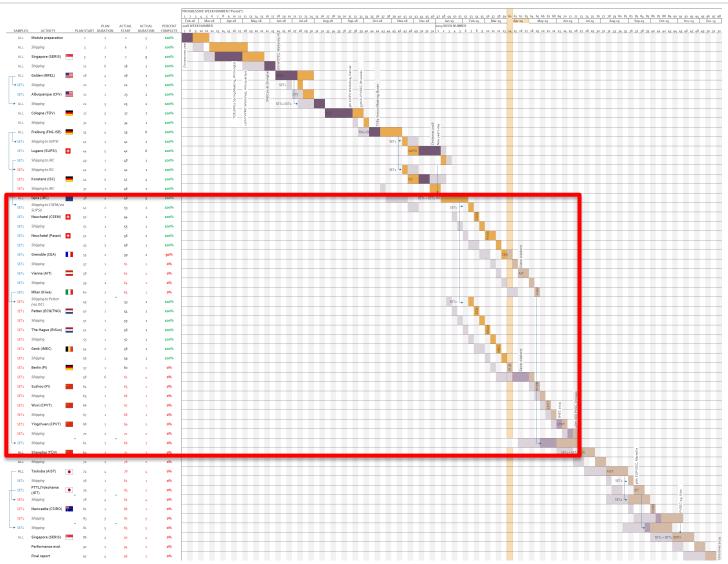
The 1st International Proficiency Testing on bifacial modules


monofacial (REFERENCE)	bifacial					
P-type PERC	poly-Si	P-type PERC	НЈТ	N-type PERT	P-type PERC	N-type PERT	poly-Si
2 samples	2 samples	2 samples	2 samples	2 samples	2 samples	2 samples	2 samples
60 cells	60 cells	60 cells	60 cells	60 cells	72 cells	120 cells HC	144 cells HC
Frame	Frame	Frame	No frame	Frame	Frame	No frame	No frame

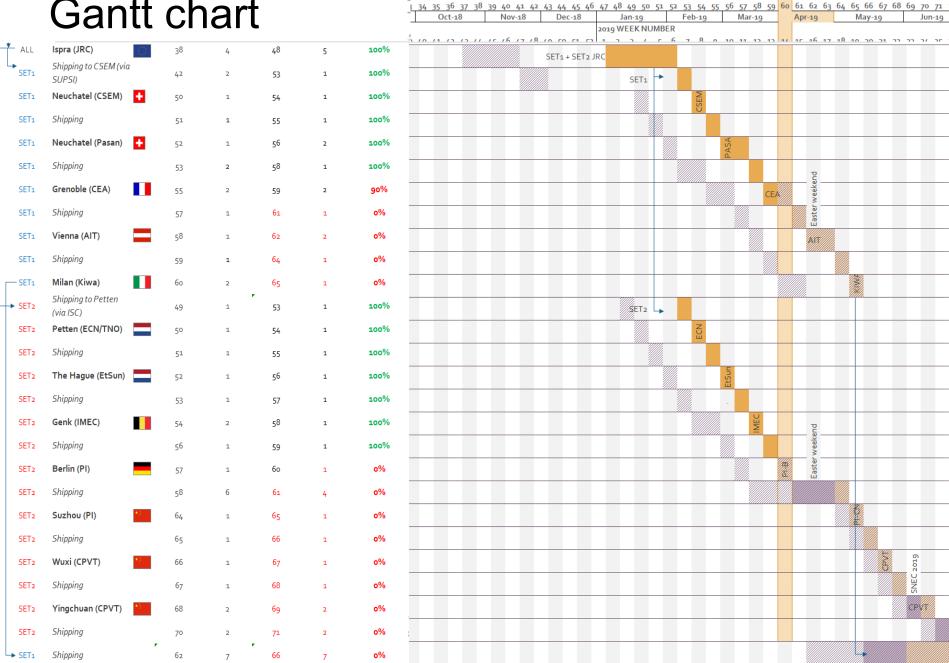
Shipment: SERIS provides...


4 ATA Cases
4 module/case
~100 kg/case

New Standard for Bifacial PV Modules



SERIS to coordinate the 1st International Round Robin



Gantt chart

Gantt chart

Statistical design (1)

Participants are divided in:

ISO 17025 accred	Non-accredited laboratories	
	SERIS =	
	Kiwa 💶	Pasan 🖽
NREL =	SUPSI 🖸	CSEM-EPFL 🖸
JRC 🔤	CEA-INES I	CSIRO 200
Fraunhofer-ISE 💳	PI-Berlin 💳	ISC 💳
TUV-Rheinland 💳	PI-China	ECN/TNO =
AIST •	CPVT E	Eternal-Sun 💳
	JET •	IMEC ••
	AIT =	
Group 1	Group 2	Group 3

Statistical design (2)

For the **bifacial** modules, to calculate:

•
$$z'_i = \frac{x_i - x_{PT}}{\sigma_{PT}(x)} \sqrt{\frac{n}{n+1}}$$

the "z-score"

(all laboratories)

•
$$E_{n,i} = \frac{x_i - x_{PT}}{\sqrt{U^2(x_i) + U^2(x_{PT})}}$$

the " E_n -score"

(only Group 1 & 2)

 $E_n > 1.0$ (unsatisfactory)

 $z \le 2.0$ (satisfactory)

The PT is satisfactory
Action: none

 $E_n \leq 1.0$ (satisfactory)

The claimed uncertainty is too low, but the result fills the requirements of the Page 19 and 19 and

Action: check uncertainty

z > 2.0 (unsatisfactory)

The result is within the claimed uncertainty, but not within the limits of the PT

Action: check procedure

The result is too much biased and the reason should be clarified

Action: check uncertainty & procedure

Conclusions

SERIS testing reference for Singapore & the Tropics

Thank you for your attention!

More information at www.seris.sg

We are also on:

TruePowerTM Alliance

Solar Energy System (SES) Cluster

Anhalt University of Applied Sciences

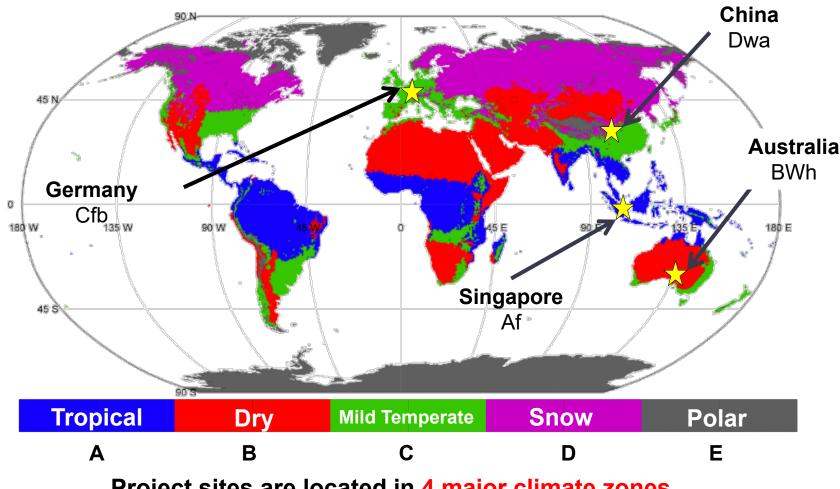
R&D **Institutions**

Hochschule Anhalt

Certifying body

PV Module manufacturers

www.truepoweralliance.com



TruePowerTM Alliance

Solar Energy System (SES) Cluster

World map of Köppen climate classification for 1901–2010

Project sites are located in 4 major climate zones

TruePowerTM Alliance

Solar Energy System (SES) Cluster

Multi-Si 1

Multi-Si 2

CIS

CdTe