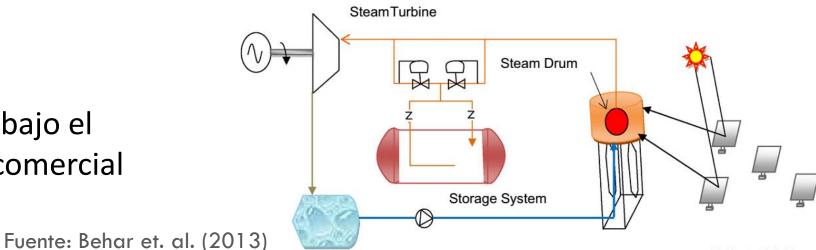


- Tecnología CSP
- Desafíos
- □ s-CO₂
- Viabilidad Técnica
- Configuraciones
- Brechas Tecnológicas
- Otras alternativas



Tecnologías CSP - Torre

- Primera Generación
 - Receptor opera con vapor saturado
- Abengoa
 - □ PS10
 - Construcción 2004-2007
 - Puesta en Marcha 2007
 - **□** PS20
 - Construcción 2006-2009
 - Puesta en Marcha 2009
- Alta confiabilidad, pero bajo el umbral de la eficiencia comercial

Wet Cooling

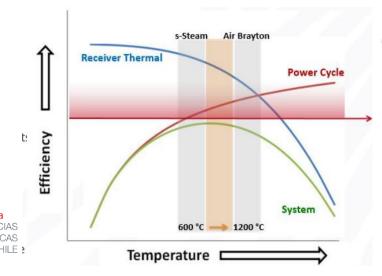
Tower-Receiver

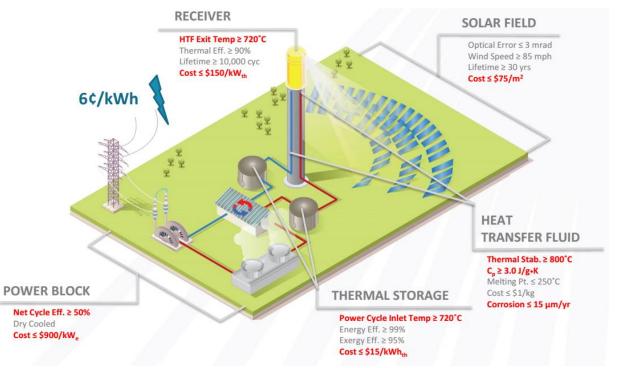
Heliostat Field

Tecnologías CSP - Torre

Segunda Generación

- Receptor con sales fundidas
- \blacksquare KNO₃ (40%) + NaNO₃ (60%)
- Solar Two
 - Nevada
- Gemasolar
 - Sevilla
- □ Facilidad de integración
 - Almacenamiento térmico
 - Back Up

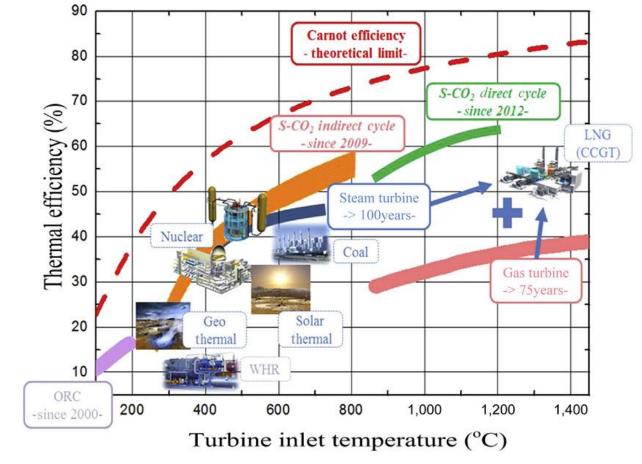




- Reducir costos
 - Hibridación CSP+PV
 - Escala
- Aumentar eficiencia de conversión

→ Aumentar temperaturas de operación

$$\eta = 1 - \frac{T_L}{T_H}$$

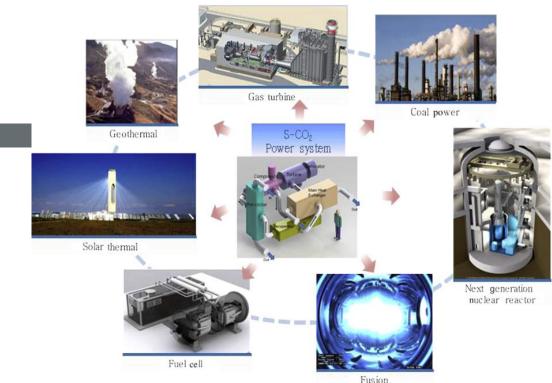

Fuente: energy.gov/sunshot

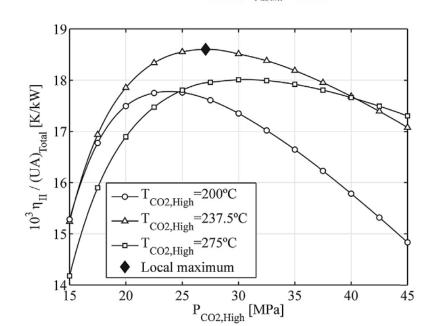
José M. Cardemil

Santiago, 02/04/2018

CO₂ como Fluido de Trabajo

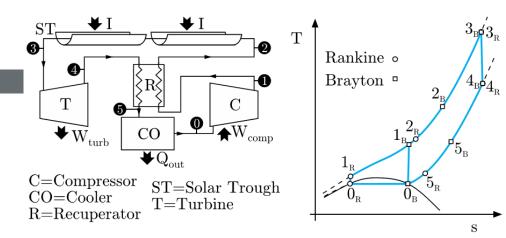
- Fluidos de trabajo comúnmente usados en ciclos térmicos
 - Butane, R11, Ammonia, pentane, Isopentane, Isobutene, Toluene, Hydrocarbon mixtures, other fluids.
 - Desventajas
 - Inflamables, altamente tóxicos, elevado GWP, afectan la capa de ozono y elevado costo.
- CO₂ no presenta las desventajas mencionadas, pero...
 - Propiedades altamente variables
 - Altas presiones de operación

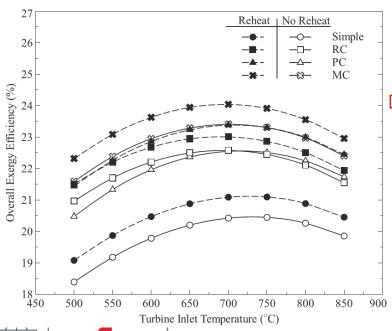



CO₂ como Fluido de Trabajo

- Inicialmente investigado para ser utilizado en centrales nucleares
 - Angelino et al. (1968)

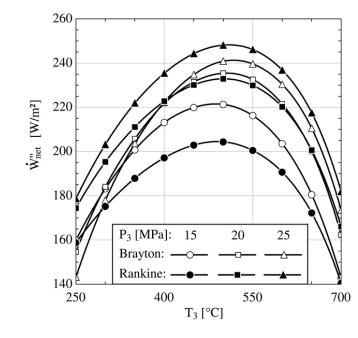
- Varios autores han demostrado las ventajas del uso de CO₂ y optimizado sus condiciones de operación
 - Battisti, F. G., Cardemil, J. M., & Da Silva, A. K. (2016). A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid. *Energy*, *112*, 908–916.
 - Cardemil, J. M., & da Silva, A. K. (2016). Parametrized overview of CO2 power cycles for different operation conditions and configurations An absolute and relative performance analysis. *Applied Thermal Engineering*, 100, 146–154.





CO₂ como Fluido de Trabajo en CSP

Algunos autores han analizado su utilización en concentradores lineales


de Araujo Passos, L. A., de Abreu, S. L., & da Silva, A. K. (2017). Optimal scale of solar-trough powered plants operating with carbon dioxide. *Applied Thermal Engineering*, 124, 1203–1212.

Pero su mejor desempeño se observa en sistemas de torre

Padilla, R. V., Soo Too, Y. C., Benito, R., & Stein, W. (2015). Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. *Applied Energy*, 148, 348–365.

Ingeniería Mecánica FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

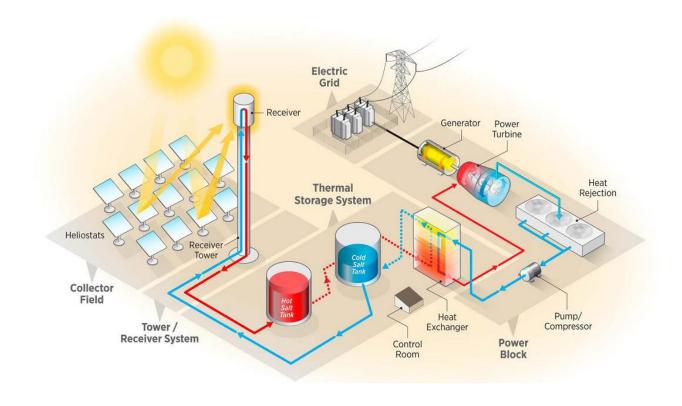
Pero Cuales son los desafíos pendientes

Almacenamiento Térmico

Química de sales

Salt	Composition by Wt.	Melting Point (°C)	Heat Capacity (J/g-K)	Density (kg/L)	Δ Volume on Melting	Notes**	Ref.
NaNO ₃ KNO ₃ (baseline)	0.60 0.40	220	1.52	1.7	+4.6%		[10]
ZnCl₂ NaCl KCl	0.686 0.075 0.239	204	0.81	2.4	NaCl/KCl: +14.8% [11] NaCl: +26.1% KCl: +22.3% [11]	ZnCl BP(732°C) [12]	[13]
MgCl₂ KCl	0.375 0.625	426	1.15	1.66	KCI: +22.3% MgCl ₂ : +30.5% [11]	MgCl ₂ BP(1412°C)	[14]
Na ₂ CO ₃ K ₂ CO ₃ Li ₂ CO ₃	0.334 0.345 0.321	398	1.61	2.0	+3.6% [11]	EP(747°C) 0.014 atm EP(827°C) 0.041 atm EP(947°C) 0.151 atm [9] [12]	[13] [15]

^{**}BP(XXX°C): boiling point temperature, EP(XXX°C): equilibrium pressure at a given temperature of CO₂

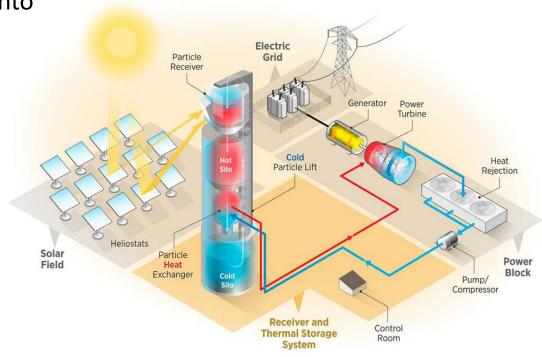

Fuente: NREL 2017, Concentrating Solar Power Gen3 Demonstration Roadmap

Salt	Notable Advantages	Notable Disadvantages
Zn-based chloride	Lowest melting point Corrosion mitigation via control of melt redox potential (oxygen and water exclusion) in inert atmospheres	 Measureable vapor pressure disperses ZnCl₂ in headspace Very corrosive in liquid and vapor phases if oxygen or water exist. Intergranular corrosion can occur. Lowest heat capacity Requires controlled purification and pre-melting procedures under vacuum
Mg-based chloride	Lowest cost per kg Corrosion mitigation via control of melt redox potential using activemetals such as Mg in inert atmospheres with oxygen/water exclusion	 Highest melting point Very corrosive in liquid and vapor phases if oxygen or water exist. Intergranular corrosion can occur. Intergranular corrosion if Mg concentration decreases below required value Requires controlled purification and pre-melting procedures under inert atmospheres
Ternary carbonate eutectic	 High heat capacity and density leads to smallest required tank volume Does not require controlled purification and pre-melting procedures. Inherently compatible with CO₂ Substantial experience from use in molten-carbonate fuel cells (Li/K carbonates) operating at ~650°C 	 Highest cost per kg (unless low-Li blends are proven effective) High melting point Lithium is a critical metal for many applications, especially batteries, which will affect market prices

Desafíos pendientes: s-CO₂ + Sales

- Combatividad de materiales/sales
 - Corrosión
 - Bombas
 - Válvulas
 - Piping
 - Receptor
 - Intercambiadores de calor
 - Micro canales pre-impresos

Fuente: SAM (2017)


Otra alternativa: Falling Particles

Partículas sólidas absorben la radiación: Directa o indirectamente

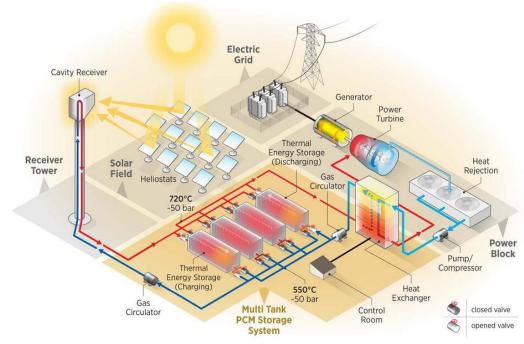
Las propias partículas actúan como medio de almacenamiento

- Desafíos:
 - Resistencia de las partículas (pérdida)
 - Geometría del receptor
 - Almacenamiento de partículas
 - Intercambiador de calor

Material	Composition	Properties ^a		Advantage	Disadvantage	
		Density(kg/m³)	Specific Heat (J/kg-K)			
Silica sand	SiO ₂	2,610	1,000	Stable, abundant, low cost	Low solar absorptivity and conductivity	
Alumina	Al ₂ O ₃	3,960	1,200	Stable	High cost	
Coal ash	SiO ₂ , Al ₂ O ₃ , + minerals	2,100	720 at ambient temperature	Stable, abundant, No/low cost	Identify suitable ash	
Calcined Flint Clay	SiO ₂ , Al ₂ O ₃ , TiO ₂ ,Fe ₂ O ₃	2,600	1,050	Mined, abundant, used as filler in FB boiler	Low absorptivity	
Ceramic proppants	75% Al ₂ O ₃ , 11%SiO ₂ , 9%Fe ₂ O ₃ ,3%TiO	3,300	1,200 (at 700°C)	High solar absorptivity, stable	Synthesized, higher cost	

C. Ho et al., "Technology advancements for next generation falling particle receivers," in *Proceedings of the Solarpaces 2013 International Conference (Energy Procedia)*, 2014.

José M. Cardemil Santiago, 02/04/2018

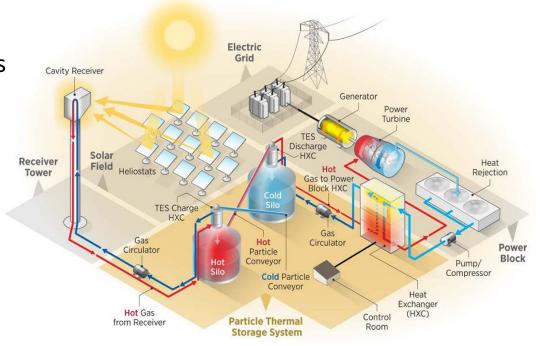

Fase gaseosa: Receptor de cavidad

El gas absorbe calor directamente en el absorbedor

- Receptor volumétrico/cavidad
- Absorberdor → Medio Poroso
- Apto para CO2, Helio y Aire
- Estabilidad y altas efectividad de absorción
- Bajo costo e impacto ambiental

Desafíos

- Capacidad de transferencia de calor reducida
- Integración a TES
- Alta potencia en flujo de fluidos →Complejidad en el patrón de flujo


Fuente: NREL (2017)

Una combinación de las alternativas anteriores?

 Substituir la configuración de convencional de dos tanques, por dos silos

Receptor volumétrico + almacenamiento en partículas

 Aún en estudio, muchos desafíos en relación a la integración y al sistema de control

Opciones Tecnológicas

Collector Field

Cost <\$75/m²

Similarities to prior

· Potentially chloride or

demonstrations

required

superior

Molten Salt

Allowance for corrosive attack

carbonate salt blends; ideal

Corrosion concerns dominate

material not determined

 Concentration ratio >50

 Operable in 35-mph winds

Falling Particle

· Most challenging to achieve

high thermal efficiency

 Optical error <3.0 mrad

 30-year lifetime

Fuente: NREL 2017, Concentrating Solar Power Gen3 Demonstration Roadmap

Receiver Cost < \$150/kWth Thermal Efficiency > 90% Exit Temperature > 720°C 10,000 cycle lifetime Material & Support

- Cost < \$1/kg Operable range from 250°C to 800°C
- Cost < \$15/kWm 99% energetic efficiency 95% exergetic efficiency
- HTF to sCO₂ **Heat Exchanger**
- Challenging to simultaneously handle corrosive attack and
- Possibly greatest challenge
- · Cost and efficiency concerns dominate

Gas Phase

- High-pressure fatigue challenges
- · Absorptivity control and thermal loss management

· Suitable materials readily exist

- · Minimize pressure drop
- · Corrosion risk retirement

· Indirect storage required

thermal exchange

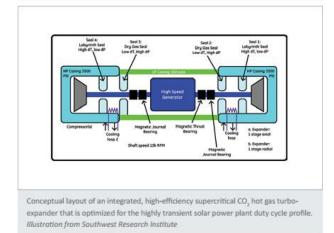
Cost includes fluid to storage

Thermal Storage

- · Direct or indirect storage may be · Particles likely double as efficient sensible thermal storage
- · Not applicable

high-pressure working fluid

Supercritical CO₂ Brayton Cycle


- · Net thermal-to-electric efficiency > 50%
- Power-cycle system cost < \$900/kW_e
- Dry-cooled heat sink at 40° Cambient
- Turbine inlet temperature ≥ 700°C

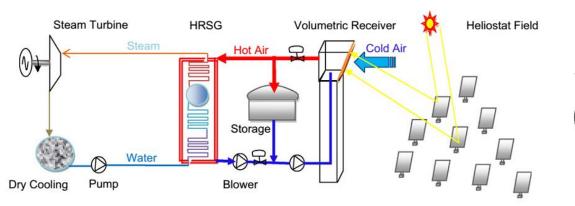
Un desafío adicional...

 Turbinas de CO₂ con elevadas eficiencias aun no están disponibles

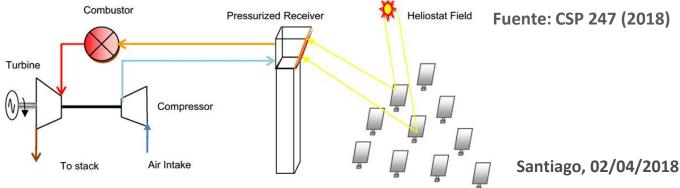
- Programa SunShot ha investido significativos recursos en este tópico
 - 2020 Operación de pilotos
 - 2030 Escala comercial

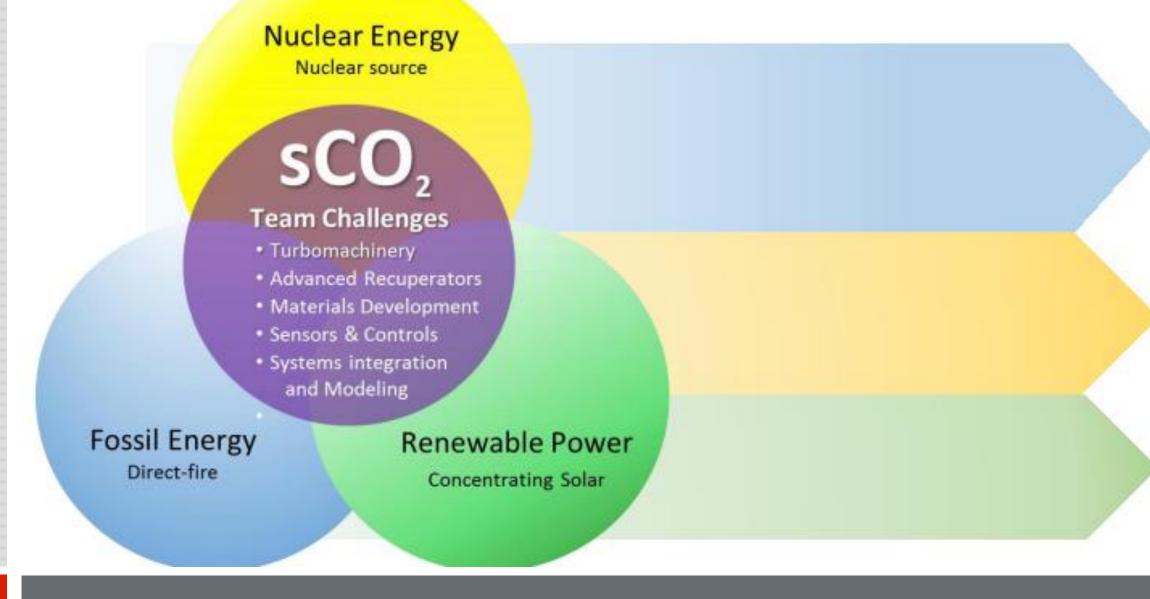
SOUTHWEST INSTITUTE	RESEARCH	R
PROGRAM:	SunShot CSP R&D 2012	
TOPIC:	Advanced Power Cycles	
LOCATION:	San Antonio, Texas	
AWARD AMOUNT:	Up to \$6.8 million	
PROJECT TERM:	2012–2015	

This project's team will build a prototype of the largest and highest-temperature s-CO₂ closed Brayton power cycle turbine ever constructed. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and more compact cycle components. Illustration from Dresser-Rand


Pero es el CO₂ la única alternativa?

Una alternativa:


- Aire atmosférico como fluido de trabajo
 - Barato y estable
 - Fácil de integrar con ciclos de gas


Desafíos:

- Receptor volumétrico
- Almacenamiento térmico costo efectivo
 - Rocas?
 - Concreto?
- Proyecto en evaluación

7 En resumen....

Muchas Gracias

José Miguel Cardemil, PhD

jcardemil@ing.uchile.cl

Cristóbal Sarmiento, M.Sc.

DIMEC, UChile

Alexandre Kupka, PhD

LEPTEN, Universidade Federal de Santa Catarina