CONCENTRATING SOLAR POWER

Dr. Tom Fluri

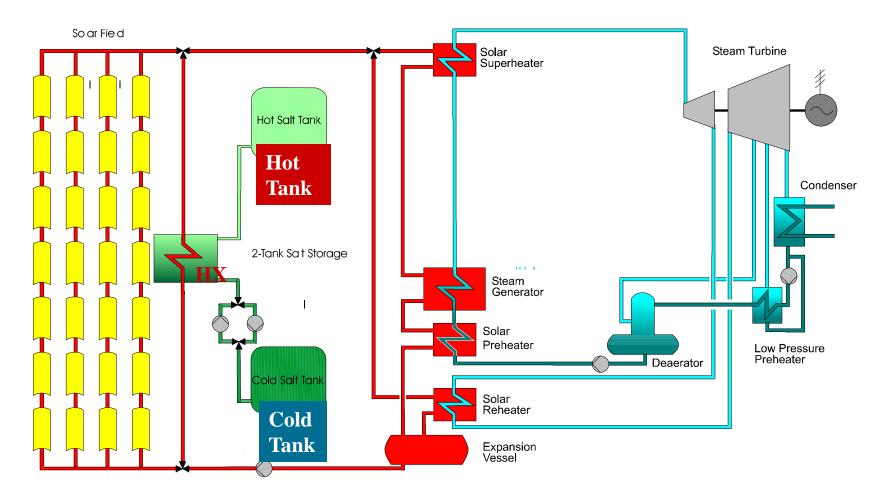
Fraunhofer Institute for Solar Energy Systems ISE

CSET Seminar Santiago, 26th May 2015

www.ise.fraunhofer.de

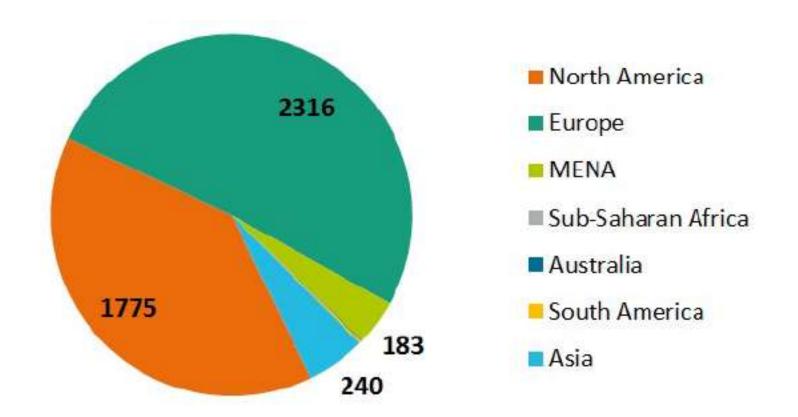
AGENDA CONCENTRATING SOLAR POWER

- Technology overview
- Market overview
- Why CSP?
- CSP for Chile
- Challenges

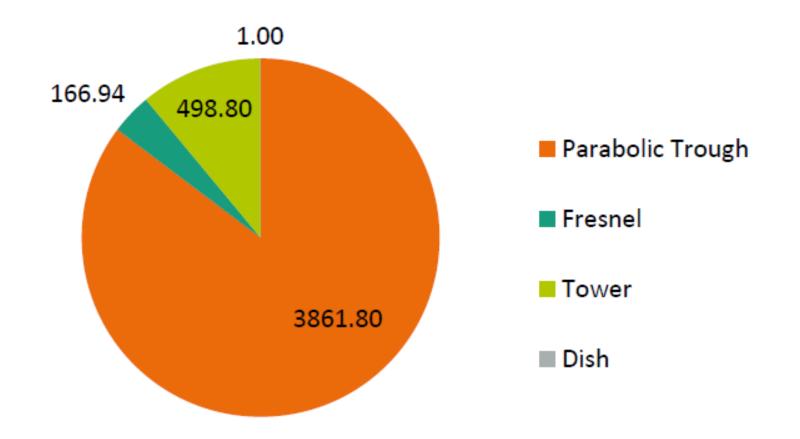


Technology Overview CSP Collector Technologies

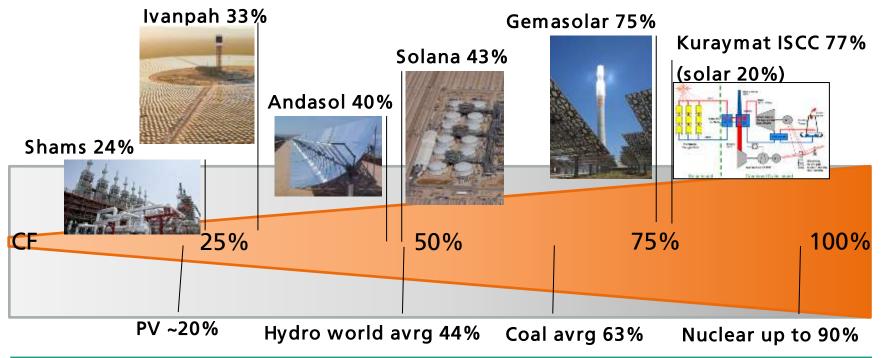
	Parabolic trough	Linear Fresnel	Dish Stirling	Central receiver
Conc. Factor	70 – 90	60 – 120	300 – 4000	500 – 1000
Status	commercial	commercial	commercial	commercial
Annual efficiency	14%	12%	18%	17%
Current max. plant capacity	280 MW	30 MW	1.5 MW	126 MW
Max. storage	up to 8h	0.5h	-	up to 18h



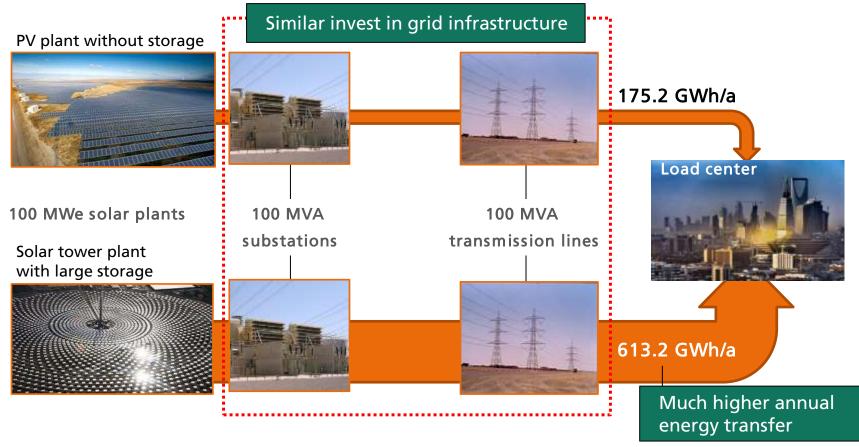
Technology Overview CSP Plant with Thermal Storage



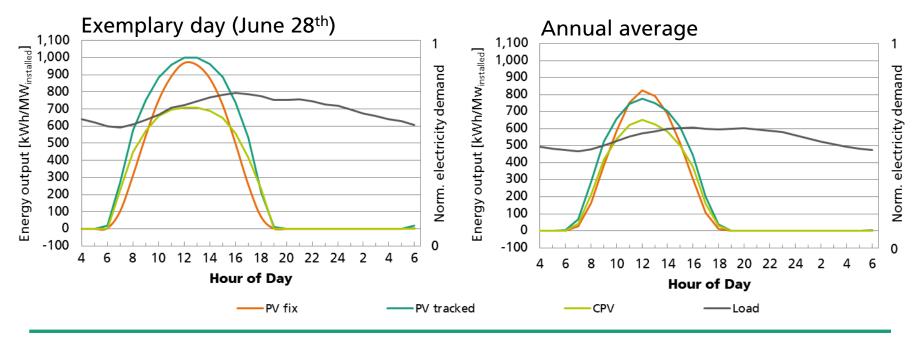
Market Overview Plants in Operation (Nominal Capacity (MW) per region)

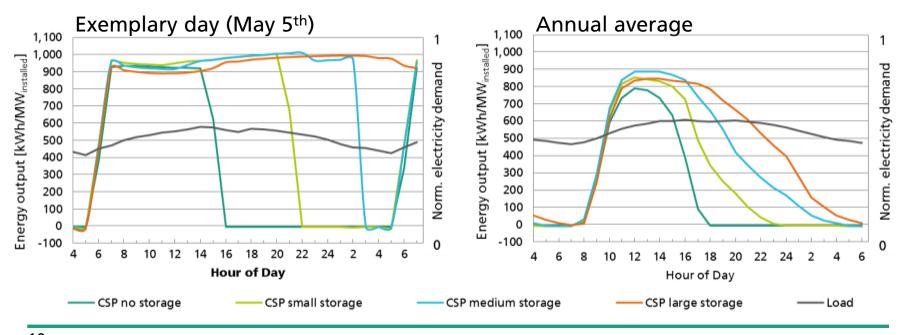

Market Overview Plants in Operation (Nominal Capacity (MW) per technology)

Why CSP? **High capacity factor**


- Capacity factor describes ratio between actual annual output and maximum theoretical output (continuous operation at nominal capacity throughout the year)
- Optional storage integration (e.g. Gemasolar) or co-firing allows for range of achievable capacity factors

Why CSP? Impact on grid infrastructure utilization

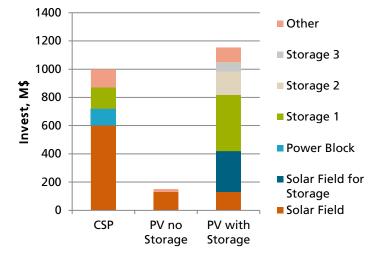

Due to the higher capacity factor the grid infrastructure is used much more effectively with CSP than with plants without storage


Why CSP? Case study – RE-mix at middle east site PV power production profile vs. load

- PV production follows irradiation with peak at noon
- CPV has slightly lower output because it only uses direct irradiance

Why CSP? Case study – RE-mix at middle east site **CSP production profile vs. load**

- On a good solar day, CSP storages are filled and the complete period of high load can be covered
- With large thermal storage, even 24/7 operation is possible
- Also the annual average shows the positive influence of storage


Why CSP (after announcements on low battery cost)? Rough comparison of Investment Cost for 100 MW Plant

Assumptions:

 Solar Multiple of 3 sufficient for 24h operation

Important to note:

- Additional Solar field capacity is required for storage charging
- Storage efficiency is not 100 % but rather 90 % in case of batteries
- Batteries need to be replaced at least once during power plant life time
- CSP still competitive for dispatchable power
- \rightarrow Detailed comparison warranted

Potential of CSP in Northern Chile Case Study

- Technologies considered:
 - parabolic trough collector (PTC) & linear Fresnel collector (LFC)
- On 1 km² a PTC plant could have:
 - 52 MW nominal capacity \geq
 - 120 GWh/year annual production \geq
- On 1 km² a LFC plant could have:
 - 67 MW nominal capacity \geq
 - 130 GWh/year annual production \geq

Slope		<u><1%</u>		< 3%		28 times current ann.
Proximity to transmission		< 20 km	< 50 km	<u>km</u>	< 50 km	electricity
Area [km²]		1235	1508	15894	23749	production
Equivalent installed power [GW]	PTC	64.7	79.0	832.1	15.4	production
Generation [TWh]	PTC	147.4	180.0	1897.3	2834.8	
Equivalent installed power [GW]		82.8	101.1	1005.3	1591.7	
Generation [TWh]	LFC	160.6	196.1	2066.6	3087.9	

CSD Potential for Northarn Chile

Fluri, T. P.; Cuevas, F.; Pidaparthi, P. & Platzer, W. J.: "Assessment Of The Potential For Concentrating Solar Power In Northern Chile" Proceedings of the 17th SolarPACES Conference, 20. - 23. September 2011, Granada, Spain, 2011

12

Challenge I

Becoming a Water Producing Technology

- Currently CSP is consuming significant amounts of water during operation
 - Steam cycle make up water
 - Cooling water replenishment
 - Mirror cleaning
- \rightarrow Alternative approach: Using waste heat to drive thermal desalination

Challenge II Adaptation to small off-grid load centers

Demonstration in Egypt

- Demonstration of a small (< 10 MW_{th}) solar thermal power plant
- Tri-generation: electricity + desalination + district cooling
- Parabolic trough CSP plant with molten salt as heat transfer and direct storage fluid (stratified storage tank)
- Pilot plant at Borg El Arab (Egypt)
- Project's key facts:
 - Plant construction start in 2015
 - Fraunhofer ISE responsible for e.g. plant simulation
 - Project coordinator: ENEA (Italy)
 - http://www.mats.enea.it/

Challenge III

Adaptation to local climate and industry

- Assessing sites in detail
 - Soiling rates
 - Earth quake potential
 - Corrosion potential
- Assessing local industry
- Dedicated capacity building

Concentrating Solar Power

- ...has a special role to play in facilitating high renewable energy penetration in Chile
- …has to become a water producing technology
- ...has to adapt to small load centers
- ...has to adapt to local climate and industry

¡Muchas gracias!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Tom Fluri

www.ise.fraunhofer.de

Tom.Fluri@ise.fraunhofer.de

